Studies on the Syntheses of Heterocyclic Compounds. Part 681.† A Novel Alkylation in the 4-Position of Isoquinoline Derivatives

By Tetsuji Kametani,* Hideo Nemoto, Mie Takeuchi, Mitsuhiro Takeshita, and Keiichiro Fukumoto, Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

Alkylations of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) with 2-methylcyclohex-2-enone (4) and with phenethyl bromide (19) in the presence of sodium hydride and dimethyl sulphoxide gave the 4 -(2 -methyl-3-oxocyclohexyl) (6) and 4-phenethyl (20) derivatives, respectively, of 6,7-dimethoxy-1-methylisoquinoline. The reaction of compound (1) with 1.4-naphthoquinone (7) under the same conditions afforded 7-methoxy-1-methyl6 -methylsulphinylmethylisoquinoline (12) as a major product and several minor products. Compound (12) was converted into 7 -methoxy-1.6-dimethylisoquinoline (13), synthesised alternatively from 4-methoxy-3-methylbenzaldehyde (14).

Reported procedures for alkylation and acylation at the 4 -position of isoquinoline derivatives include modifications of the Pomeranz-Fritsch reaction, ${ }^{1}$ reactions of acyl and alkyl halides with 1,2 -dihydroisoquinoline derivatives, ${ }^{2-4}$ reactions of 4 -lithioisoquinoline with carbon dioxide ${ }^{5}$ and aldehydes, ${ }^{3}$ and reactions of 4,7-diacetoxy-1,2,3,4-tetrahydroisoquinolines with active methylene compounds. ${ }^{6}$ However, since the reactions of 1,2 -dihydroisoquinoline derivatives with alkyl halides did not proceed in high yield, we have explored alternative routes to 4 -substituted isoquinolines. Here we report a new method of alkylation at the 4-position of a 3,4-dihydroisoquinoline through an enamine intermediate.
\dagger Part 680, T. Kametani, T. Uryu, and K. Fukumoto, preceding paper.

1 J. M. Bobbitt, K. L. Khanna, and J. M. Kieley, Chem. and Ind., 1964, 1950; J.M. Bobbitt, J. M. Kieley, K. L. Khanna, and R. Ebermann, J. Org. Chem., 1965, 30, 2247; J. M. Bobbitt, D. P. Winter, and J. M. Kieley, ibid., p. 2459.
${ }_{2}$ S. F. Dyke, M. Sainsbury, D. W. Brown, M. N. Palfreyman, and E. P. Tiley, Tetrahedron, 1968, 24, 6703.

At first, we studied enamine formation from 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline ${ }^{7}$ (1) under basic conditions, to determine which enamine, (2) or (3), would be formed as an intermediate. A mixture of the 3,4-dihydroisoquinoline (1) and 2-methylcyclohex2 -enone ${ }^{8}$ (4) (to trap the enamine) was kept at room temperature for 30 min in sodium hydride and dimethyl sulphoxide. 6,7-Dimethoxy-1-methyl-4-(2-methyl-3-oxocyclohexyl)isoquinoline (6) was obtained in 25.7% yield. The i.r. spectrum showed saturated six-membered ring ketone absorption at $1700 \mathrm{~cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$, and the n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ exhibited signals for an aliphatic methyl group at $\delta 0.88(\mathrm{~d}, J 6 \mathrm{~Hz})$ and for the aromatic

[^0]C-3 proton at $\delta 8.26$ (s). These data suggested that the cyclohexanone was attached to $\mathrm{C}-4\left[\lambda_{\max }(\mathrm{MeOH}) 314\right.$ and 326 nm], and this fact was rationalised in terms of formation of the enamine (3) and Michael addition of the enamine to 2 -methylcyclohex-2-enone to form compound (5), followed by dehydrogenation. Having thus established that the 3,4-dihydro-1-methylisoquinoline (1) formed the enamine (3) under basic conditions, we examined the behaviour of the latter in cycloaddition reactions.

A mixture of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) and 1,4-naphthoquinone (7) was heated at $70^{\circ} \mathrm{C}$ for 1 h . No tetracyclic compound product was observed, but the reaction afforded five compounds (8)-(12) in 2.9, 7.4, 7.47, 2.3, and 16.8% yield, respectively. Compound (8) contained sulphur but no nitrogen; the i.r. spectrum showed a carbonyl band ($1660 \mathrm{~cm}^{-1}$) and n.m.r. spectrum (CDCl_{3}) revealed the presence of an S-methyl group [$\delta 2.36(\mathrm{~s})$], four aromatic protons of an α-naphthoquinone ($\delta 7.5-8.13$), and an olefinic proton [$\delta 6.53$ (s)]. Compound (9) showed a naphthoquinone carbonyl band at $1660 \mathrm{~cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ and the n.m.r. spectrum $\left(\mathrm{CDCl}_{3}\right)$ showed the presence of a methyl group [$\delta 2.9$ (s)], four aromatic protons in a 1,4-naphthoquinone ($\delta 7.7-8.3$), and the $\mathrm{C}-3$ proton of an isoquinoline ring [8.03 (s)]. The product (10) was identified as 6,7 -dimethoxy- 1 -methylisoquinoline from spectral data and direct comparison with an authentic specimen. ${ }^{9}$ Compound (11), which contained a naphthoquinone system $\left[\nu_{\text {max }} .\left(\mathrm{CHCl}_{3}\right) 1660 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CDCl}_{3}\right)\right.$ 7.7-8.3 ($4 \mathrm{H}, \mathrm{m})$], exhibited n.m.r. signals for two methyl groups at $\delta 2.7$ as a singlet (6 H), and two isoquinoline C-3 protons at $\delta 8.02$ as a singlet. The last product exhibited n.m.r. signals for a methylsulphinyl group ($\delta 2.5$), methylene protons located between a sulphinyl group and an aromatic ring ($\delta 4.21$), protons $\mathrm{C}-3$ and $\mathrm{C}-4$ aromatic ($\delta 8.27$ and 7.40 ; each d, $J 6 \mathrm{~Hz}$), a C-methyl and an O-methyl group, and two isolated aromatic protons. Treatment of this product with zinc in acetic acid afforded, in 96% yield, a desulphurisation product, $\delta 2.36,2.87$, and 3.95 (each s, Me) (no CH_{2} signal). This evidence did not distinguish between 7-methoxy-1-methyl-6-methylsulphinylmethyl- (12) and 6 -methoxy-1-methyl-7-methylsulphinylmethyl-isoquinoline as the structure of the original product. We therefore carried out an alternative synthesis of compound (13), the desulphurisation product of (2).

4-Methoxy-3-methylbenzaldehyde ${ }^{10}$ (14) was condensed with nitromethane in boiling acetic acid in the presence of ammonium acetate to give the nitrostyrene (15), which was reduced with lithium aluminium hydride to afford 4 -methoxy-3-methylphenethylamine (16). ${ }^{11}$ The amine was treated with acetic anhydride-pyridine to give the acetamide (17), which was cyclized in the presence of phosphoryl chloride in acetonitrile to afford

[^1]the 3,4-dihydro-7-methoxy-1,6-dimethylisoquinoline (18) [$\delta\left(\mathrm{CDCl}_{3}\right) 2.22$ and 2.38 (each $\left.3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right)$]. This 3,4dihydroisoquinoline was dehydrogenated with sodium

(1) $R^{1}=O M e . R^{2}=M e$
(18) $R^{1}=R^{2}=M e$
(22) $R^{1}=O M e, R^{2}=H$

(6)

(2)

(5)

(7) $R=H$
(8) $R=S M e$

(10) $R^{1}=R^{2}=O M e$
(12) $\mathrm{R}^{1}=\mathrm{MeS}(\mathrm{O}) \cdot \mathrm{CH}_{2} \cdot \mathrm{R}^{2}=\mathrm{OMe}$ (13) $\mathrm{R}^{1}=\mathrm{Me} . \mathrm{R}^{2}=\mathrm{OMe}$

hydride in dimethyl sulphoxide at $70^{\circ} \mathrm{C}$ to give 7 -methoxy-1,6-dimethylisoquinoline (13), which was identical with the foregoing desulphurisation product. Thus, the fifth product was identified as 7 -methoxy-1-methyl-6-methylsulphinylmethylisoquinoline (12).

[^2]Alkylation of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) was then attempted with phenethyl bromide (19), at $60^{\circ} \mathrm{C}$ for 1 h , and the expected 4phenethylisoquinoline (20) was obtained in 20.5% yield [$\delta\left(\mathrm{CDCl}_{3}\right) 2.98-3.26\left(2 \mathrm{CH}_{2}\right), 8.06(\mathrm{H}-3)$, and $2.83,3.91$, and 3.96 (3 Me)]. 3,4-Dihydro-6,7-dimethoxyisoquinoline ${ }^{12}$ (22) was then treated with 3,4 -methylenedioxyphenethyl bromide ${ }^{13}$ (21) under the same conditions, but two unexpected compounds, (24) and (10), were obtained, in 17 and 12.7% yield, respectively. Compound (24), m/e $226\left(M^{+}\right)$, showed n.m.r. signals for a methylsulphinyl group at $\delta 2.55$ (singlet) and three methylene groups at $1.6-3.0$. The product (10) showed signals for a C-methyl group at $\delta 2.88$ (singlet) and aromatic $\mathrm{C}-3$ and $\mathrm{C}-4$ protons at 8.22 and 7.32 (doublets, $J 6 \mathrm{~Hz}$) in addition to two isolated aromatic protons. The product was in fact identical with authentic 6,7-dimethoxy-1-methylisoquinoline (10). ${ }^{9}$

(14) $\mathrm{R}=\mathrm{CHO}$ (15) $\mathrm{R}=\mathrm{CH}: \mathrm{CH} \cdot \mathrm{NO}_{2}$ (16) $\mathrm{R}=\left[\mathrm{CH}_{2}\right]_{2} \cdot \mathrm{NH}_{2}$
(17) $\mathrm{R}=[\mathrm{CH}]_{2} \cdot \mathrm{NHAC}$

(20)

(19) $R^{1}=R^{2}=H \cdot R^{3}=\mathrm{Br}$
(21) $R^{1} R^{2}=0 \cdot \mathrm{CH}_{2} \cdot O . R^{3}=\mathrm{Br}$
(24) $R^{1} R^{2}=0 \cdot \mathrm{CH}_{2} \cdot \mathrm{O} \cdot \mathrm{R}^{3}=\mathrm{CH}_{2} \cdot \mathrm{~S}(0) \mathrm{Me}$

(23)

Thus the expected 4 -phenethylisoquinoline (23) was not formed from a 3,4-dihydroisoquinoline (22) having no methyl group at C-1.

EXPERIMENTAL

M.p.s were measured with a Yanagimoto micro apparatus (MP-S2). I.r. spectra were measured with a Hitachi 215 grating spectrophotometer, n.m.r. spectra with JEOL PMX-60 and JEOL JNM-PS-100 spectrometers (tetramethylsilane as an internal standard), mass spectra with a Hitachi RMU-7 spectrometer, and u.v. spectra with a Hitachi 124 spectrometer.

6,7-Dimethoxy-1-methyl-4-(2-methyl-3-oxocyclohexyl) iso-

quinoline (6).-Sodium hydride (50% in oil; 1.0 g) was added to dimethyl sulphoxide (20 ml), and the mixture was stirred for 1 h at $70^{\circ} \mathrm{C}$, then cooled in ice while a solution of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) (400 mg) in dimethyl sulphoxide (5 ml) was added. The resulting mixture was stirred for 1 h at $60^{\circ} \mathrm{C}$, then a solution of 2-methylcyclohex-2-enone ${ }^{8}$ (4) (220 mg) in dimethyl sulphoxide (5 ml) was added. The mixture was stirred for a further 30 min at room temperature, then water was added and the mixture was extracted with
${ }_{12}$ W. M. Whaley and M. Meadow, J. Chem. Soc., 1953, 1067.
${ }_{13}{ }^{13}$ S. Sugasawa and Y. Suzuta, J. Pharm. Soc. Japan, 1951, 71,
ether. The ethereal solution was extracted with 10% hydrochloric acid, and the aqueous acidic layer was washed with ether and basified with 10% ammonium hydroxide. The aqueous layer was again extracted with ether and the ethereal layer was washed with saturated sodium chloride solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to leave an oil, which was subjected to column chromatography on silica gel (5 g). Elution with chloroform gave the 4 -cyclohexylisoquinoline (6) ($157 \mathrm{mg}, 25.7 \%$) as needles (from methanol), m.p. 183-184 ${ }^{\circ}$ (Found: C, 72.4; H, 7.45; N, 4.35. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{3}$ requires $\left.\mathrm{C}, 72.85 ; \mathrm{H}, 7.35 ; \mathrm{N}, 4.45 \%\right)$, $\nu_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 1700 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), \delta\left(\mathrm{CDCl}_{3}\right) 0.88(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}$, $\mathrm{CHMe}), 2.88(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 4.03(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 7.17$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}$), $7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and $8.26(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, $m / e 313\left(M^{+}\right)$.

Reaction of 3,4-Dihydro-6,7-dimethoxy-1-methylisoquinoline (1) with 1,4-Naphthoquinone (17).-A solution of sodium hydride (50% in oil; 2.4 g) in dimethyl sulphoxide (30 ml) was stirred for 1 h at $70^{\circ} \mathrm{C}$, then cooled in ice while a solution of the 3,4 -dihydroisoquinoline (1) (1 g) in dimethyl sulphoxide (10 ml) was added. The mixture was stirred for 1 h at $70{ }^{\circ} \mathrm{C}$, then a solution of 1,4-naphthoquinone (7) (790 mg) in dimethyl sulphoxide (10 ml) was added. The resulting mixture was stirred for 1 h at $70^{\circ} \mathrm{C}$, then water was added and the mixture was extracted with chloroform. The organic layer was washed with saturated sodium chloride solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to leave a gum which was subjected to column chromatography on silica gel (60 g). Elution with benzene afforded 2 -methyl-thio-1,4-naphthoquinone (8) ($30 \mathrm{mg}, 2.9 \%$) as yellowish needles (from ethanol), m.p. 165-166 (Found: C, 64.55; $\mathrm{H}, 4.0 . \mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}, 3.95 \%$), $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right)$ $1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), \delta\left(\mathrm{CDCl}_{3}\right) 2.36(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{SMe}), 6.53(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{H})$, and $7.5-8.13(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), m / e 204\left(M^{+}\right)$. Elution with benzene-methanol ($99: 1 \mathrm{v} / \mathrm{v}$) then gave 6,7-dimethoxy-1-methyl-4-(1,4-naphthoquinon-2-yl)isoquinoline
(9) $(130 \mathrm{mg}, 7.4 \%)$ as reddish needles (from methanol), m.p. 218-220 (Found: C, 72.85; H, 4.7; N, 3.8. $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{4}, 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.6 ; \mathrm{H}, 4.85 ; \mathrm{N}, 3.85 \%$), $\nu_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), \delta\left(\mathrm{CDCl}_{3}\right) 2.9(3 \mathrm{H}, \mathrm{s}, \mathrm{l}-\mathrm{Me})$, $3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.0(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $7.10(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.23(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.7-8.3(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.03(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), m / e 359\left(M^{+}\right)$, followed by 6,7-dimethoxy-1-methylisoquinoline (10) ($74 \mathrm{mg}, 7.47 \%$), needles (from n-hexane), m.p. 110-111 ${ }^{\circ}$ (lit., $110-111^{\circ}$), $\lambda_{\text {max. }}(\mathrm{MeOH}) 312$ and $325 \mathrm{~nm}, \delta\left(\mathrm{CDCl}_{3}\right) 2.89(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me}), 4.0(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 6.9-7.5(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.2(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3-\mathrm{H}), m / e 203\left(M^{+}\right)$. Elution with benzene-methanol (49:1 v/v) gave 2,3-bis-(6,7-dimethoxy-1-methylisoquinolin-4-yl)-1,4-naphthoquinone (11) (154 mg, 2.3%) as yellowish needles (from benzene), m.p. $>300^{\circ}$ (Found: $\mathrm{C}, 70.45 ; \mathrm{H}, 5.0 . \mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}, \mathrm{H}_{2} \mathrm{O}$ requires C , $70.55 ; \mathrm{H}, 5.25 \%)$, $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1660 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), \delta\left(\mathrm{CDCl}_{3}\right)$ $2.7(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 3.93(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.0(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe}), 6.83(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.20(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.7-8.3$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.02(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), m / e 560\left(M^{+}\right)$. Elution with benzene-methanol ($97: 3 \mathrm{v} / \mathrm{v}$) afforded 7-methoxy-1-methyl-6-methylsulphinylmethylisoquinoline (12) ($204 \mathrm{mg}, 16.8 \%$) as needles (from n-hexane), m.p. 116 117° (Found: C, 62.5; H, 6.05; N, 5.65. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 62.6 ; \mathrm{H}, 6.05 ; \mathrm{N}, 5.6 \%), \delta\left(\mathrm{CDCl}_{3}\right) 2.5(3 \mathrm{H}, \mathrm{s}$, SOMe), $2.9(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 4.0(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.21(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \cdot \mathrm{SO}\right), 7.28(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.70(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.40(1 \mathrm{H}$, $\mathrm{d}, J 6 \mathrm{~Hz}, 4-\mathrm{H}$), and $8.27(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3-\mathrm{H}), m / e 249\left(M^{+}\right)$. Reaction of the 6-Methylsulphinylmethylisoquinoline (12)
with Zinc in Acetic Acid.-Activated zinc dust (450 mg) and acetic acid (20 ml) were added to a solution of the isoquinoline (12) (170 mg) in ethanol (10 ml). The mixture was stirred for 2 h at room temperature and refluxed for 2 h . After removal of zinc, the solvent was distilled off in vacuo and the residue was basified with 10% ammonium hydroxide and extracted with chloroform. The organic layer was washed with saturated sodium chloride solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give 7-methoxy-1,6dimethylisoquinoline (13) ($120 \mathrm{mg}, 96 \%$), which was purified by sublimation to afford needles, m.p. 84-85 (Found: C, $75.85 ; \mathrm{H}, 6.95 ; \mathrm{N}, 7.25 . \quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}, 0.17 \mathrm{H}_{2} \mathrm{O}$ requires C , 75.75 ; $\mathrm{H}, 7.05 ; \mathrm{N}, 7.35 \%), \delta\left(\mathrm{CDCl}_{3}\right) 2.36(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me})$, $2.87(3 \mathrm{H}, \mathrm{s}, 1-\mathrm{Me}), 3.95(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.16-7.53(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.21(1 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, 3-\mathrm{H}), m / e 187\left(M^{+}\right)$; the hydrochloride formed needles (from methanol-ether), m.p. 250° (decomp.).

4-Methoxy-3-methyl- β-nitrostyrene (15).-A mixture of 4-methoxy-3-methylbenzaldehyde ${ }^{10}$ (14) (5 g), nitromethane $(4 \mathrm{~g})$, ammonium acetate (3.9 g), and acetic acid (30 ml) was refluxed for 2 h . The mixture was then poured into water to give a yellowish solid, which was recrystallised from ethanol to give the nitrostyrene (15) ($2.5 \mathrm{~g}, 39 \%$) as yellowish needles, m.p. 76-77 ${ }^{\circ}$ (Found: C, 62.15; H, 5.65; $\mathrm{N}, 7.5$. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires $\mathrm{C}, 62.15 ; \mathrm{H}, 5.75 ; \mathrm{N}$, $7.25 \%), \nu_{\text {max. }} 1620(\mathrm{C}=\mathrm{C})$ and $1330 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right), \delta\left(\mathrm{CDCl}_{3}\right)$ $2.22(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.89(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.76-7.42(3 \mathrm{H}, \mathrm{m}$, ArH), $7.45(1 \mathrm{H}, \mathrm{d}, J 14 \mathrm{~Hz}$, olefinic), $7.95(1 \mathrm{H}, \mathrm{d}, J 14 \mathrm{~Hz}$, olefinic).

4-Methoxy-3-methylphenethylamine (16).-A solution of the nitrostyrene (15) (6 g) in tetrahydrofuran (50 ml) was added to a suspension of lithium aluminium hydride (4 g) in tetrahydrofuran. The mixture was then refluxed for 1 h , 15% sodium hydroxide was added, and the inorganic precipitate was filtered off. Evaporation afforded a residue which was extracted with benzene. The organic layer was washed with saturated sodium chloride solution, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), and evaporated to leave a yellowish oil, which was distilled to give 4-methoxy-3-methylphenethylamine (16) ($3 \mathrm{~g}, 59 \%$) as an oil, b.p. $95-100^{\circ}$ at 4 mmHg (lit., ${ }^{11} 245-$ 250° at 710 mmHg).

N-(4-Methoxy-3-methylphenethyl)acetamide (17).-A solution of the amine (16) and acetic anhydride (2.5 g) in pyridine (20 ml) was stirred for 2 h at room temperature. Then water (10 ml) was added and the mixture was extracted with chloroform. The organic layer was washed with 10% hydrochloric acid and saturated sodium chloride solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the amide (17) ($3.5 \mathrm{~g}, 92 \%$) as needles, m.p. $58-59^{\circ}$ (from n-hexane) (Found: $\mathrm{C}, 69.05 ; \mathrm{H}, 8.0 ; \mathrm{N}, 6.4 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}, 0.1 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 68.95 ; \mathrm{H}, 8.3 ; \mathrm{N}, 6.7 \%)$, $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1660$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}), \delta\left(\mathrm{CDCl}_{3}\right) 1.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.19(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{Me})$, $2.71\left(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{PhCH}_{2} \cdot \mathrm{CH}_{2} \mathrm{~N}\right), 3.41(2 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}$, $\left.\mathrm{PhCH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{~N}\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.63-7.1(3 \mathrm{H}, \mathrm{m}$, ArH).

3,4-Dihydro-7-methoxy-1,6-dimethylisoquinoline (18).-A mixture of the amide (17) (3.4 g), phosphoryl chloride $(3.0 \mathrm{~g})$, and acetonitrile (30 ml) was refluxed for 6 h , then evaporated. The residue was washed with ether, basified with 10% ammonium hydroxide solution, and extracted with chloroform. The organic layer was washed with saturated sodium chloride solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to leave an oil, which was purified by column chromatography on silica gel (60 g) with chloroform to give the 3,4 -dihydroisoquinoline (18) ($1.3 \mathrm{~g}, 42 \%$) as an oil,
$\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1620 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}), \delta\left(\mathrm{CDCl}_{3}\right) 2.22(3 \mathrm{H}, \mathrm{s}$, $1-\mathrm{Me}), 2.38(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.36-2.8\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{~N}\right)$, $3.41-3.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{~N}\right)$, $3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, and $6.86 \mathrm{br}(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), m / e 189\left(M^{+}\right)$. The picrate formed yellowish needles, m.p. 235-236 ${ }^{\circ}$ (from ethanol) (Found: $\mathrm{C}, 51.7 ; \mathrm{H}, 4.35 . \quad \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{O}$ requires C, $51.4 ; \mathrm{H}$, 4.8\%).

7-Methoxy-1,6-dimethylisoquinoline (13).-A mixture of sodium hydride (50% in oil; 1.25 g) and dimethyl sulphoxide (20 ml) was stirred for 1 h at $70^{\circ} \mathrm{C}$. A solution of the 3,4-dihydroisoquinoline (18) (500 mg) in dimethyl sulphoxide (5 ml) was then added and the mixture was stirred for 1 h at $70^{\circ} \mathrm{C}$. After addition of ice-water, the mixture was extracted with 10% hydrochloric acid. The aqueous layer was basified with 10% ammonium hydroxide and extracted with ether. The organic layer was washed with saturated sodium chloride solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to give the isoquinoline (13) ($300 \mathrm{mg}, 60.8 \%$) which was purified by sublimation to give needles, m.p. $84-85^{\circ}$. The hydrochloride formed needles (from methanol-ether), m.p. 250° (decomp.), identical with the sample prepared previously [i.r. spectrum (KBr)].

6,7-Dimethoxy-1-methyl-4-phenethylisoquinoline (20).-A mixture of sodium hydride (50% in oil; 1.44 g) and dimethyl sulphoxide (20 ml) was stirred for 1 h at $70^{\circ} \mathrm{C}$. A solution of the 3,4 -dihydro-1-methylisoquinoline (1) (615 mg) in dimethyl sulphoxide (5 ml) was then added and the mixture was stirred for 1 h at $65{ }^{\circ} \mathrm{C}$. A solution of phenethyl bromide (19) (555 mg) in dimethyl sulphoxide (5 ml) was then added and the mixture was stirred for 1 h at $70^{\circ} \mathrm{C}$, then decomposed with water and extracted with ether. The ethereal layer was extracted with 10% hydrochloric acid. The aqueous layer was basified with 10% ammonium hydroxide and extracted with ether. The organic layer was washed with saturated sodium chloride solution, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and evaporated to leave an oil, which was chromatographed on silica gel (30 g) with chloroform to give the 4-phenethylisoquinoline (20) ($189 \mathrm{mg}, 20.5 \%$) as an oil, $\lambda_{\text {max. }}(\mathrm{MeOH}) 315$ and $327 \mathrm{~nm}, \delta\left(\mathrm{CDCl}_{3}\right) 2.83(3 \mathrm{H}$, s, $1-\mathrm{Me}), 2.98-3.26\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}\right), 3.91(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $3.96(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.0-7.33(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $8.06(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{H}), m / e 307\left(M^{+}\right)$. The picrate had m.p. $210-211^{\circ}$ (decomp.) (from ethanol) (Found: C, $57.95 ; \mathrm{H}, 4.65 ; \mathrm{N}$, 10.05. $\quad \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{9}$ requires C, $\left.58.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 10.45 \%\right)$.

Reaction of 3,4-Dihydro-6,7-dimethoxyisoquinoline (22) with 3,4-Methylenedioxyphenethyl Bromide (21).-Sodium hydride (50% in oil; 1.4 g) in dimethyl sulphoxide (30 ml) was stirred for 1 h at $70^{\circ} \mathrm{C}$, then a solution of the $3,4-$ dihydroisoquinoline (22) (573 mg) in dimethyl sulphoxide (5 ml) was added. The mixture was stirred for 30 min at $60{ }^{\circ} \mathrm{C}$ and a solution of the phenethyl bromide (21) in dimethyl sulphoxide (5 ml) was added. Stirring was continued for 3 h at $70^{\circ} \mathrm{C}$, then ice-water was added, and the mixture was extracted with ether. The ethereal layer was extracted with 10% hydrochloric acid and the extract was washed with ether. The aqueous layer was basified with 10% ammonium hydroxide solution and extracted with ether. The organic layer was washed with saturated sodium chloride solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated to leave an oil, which was subjected to column chromatography on silica gel (30 g). Elution with benzene-ethyl acetate ($95: 5 \mathrm{v} / \mathrm{v}$) afforded the 1 -methylisoquinoline (10) ($73 \mathrm{mg}, 12.3 \%$) as needles (from n-hexane), m.p. $110-111^{\circ}$ (lit., ${ }^{9} 110-111^{\circ}$), identical with an authentic specimen ${ }^{9}$ [i.r. spectrum $\left(\mathrm{CHCl}_{3}\right)$]. Elution with benzene-ethyl
acetate (4:1 v/v) gave methyl 3-(3,4-methylenedioxyphenyl)propyl sulphoxide (24) ($123 \mathrm{mg}, 17 \%$) as an oil, $\delta\left(\mathrm{CDCl}_{3}\right) 2.55(3 \mathrm{H}, \mathrm{s}, \mathrm{SOMe}), 1.6-3.0\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \cdot \mathrm{CH}_{2}{ }^{\circ}\right.$ $\left.\mathrm{CH}_{2}\right), 5.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{O} \cdot \mathrm{CH}_{2} \cdot \mathrm{O}\right)$, and $6.7 \mathrm{br}(3 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), m / e$ 226 (M^{+}).

We thank Mrs. H. Hori, Mrs. C. Koyanagi, Mrs. R. Kobayashi, Miss R. Suenaga, and Mr. K. Kawamura, Pharmaceutical Institute, Tohoku University, for microanalyses and spectral measurements.
[6/750 Received, 15th April, 1976]

[^0]: ${ }^{3}$ M. Sainsbury, D. W. Brown, S. F. Dyke, R. D. J. Clipperton, and W. R. Tonkyn, Tetrahedron, 1970, 26, 2239.
 ${ }^{4}$ T. K. Chen and C. K. Bradsher, Tetrahedron, 1973, 29, 1951.
 ${ }^{5}$ H. Gilman and T. S. Soddy J. Org. Chem. 1957, 22, 565.
 6 O. Hoshino, Y. Yamanashi, T. Toshioka, and B. Umezawa, Chem. and Pharm. Bull. (Japan), 1971, 19. 2166.
 ${ }^{7}$ E. Späth and N. Polgar, Monatsh., 1929, 51, 197.
 s E. W. Warnhoff, D. G. Martin, and W. S. Johnson, Org. Synth., Coll. Vol. 4. 1963, p. 162.

[^1]: ${ }^{9}$ Von H. Bruderer and A. Brossi, Helv. Chim. Acta, 1965, 48, 1945.
 ${ }_{10}$ R. A. Barnes and N. N. Gerber, J. Org. Chem., 1961, 20, 4540 ; N. P. Buu-Hoï, N. D. Xuong, M. Sy, G. Lejeune, and N. B. Tien. Bull. Soc. chim. France, 1955, 1694.

[^2]: ${ }^{11}$ S. N. Kulkarni, S. B. Patil, P. V. Panchangam, and K. S. Nargund, Indian J. Chem.. 1967, 5, 471.

