Studies on the Syntheses of Heterocyclic Compounds. Part 681.† A Novel Alkylation in the 4-Position of Isoquinoline Derivatives

By Tetsuji Kametani,* Hideo Nemoto, Mie Takeuchi, Mitsuhiro Takeshita, and Keiichiro Fukumoto. Pharmaceutical Institute, Tohoku University, Aobayama, Sendai, Japan

Alkylations of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) with 2-methylcyclohex-2-enone (4) and with phenethyl bromide (19) in the presence of sodium hydride and dimethyl sulphoxide gave the 4-(2-methyl-3-oxocyclohexyl) (6) and 4-phenethyl (20) derivatives, respectively, of 6,7-dimethoxy-1-methylisoquinoline. The reaction of compound (1) with 1.4-naphthoquinone (7) under the same conditions afforded 7-methoxy-1-methyl-6-methylsulphinylmethylisoquinoline (12) as a major product and several minor products. Compound (12) was converted into 7-methoxy-1,6-dimethylisoquinoline (13), synthesised alternatively from 4-methoxy-3-methylbenzaldehyde (14).

REPORTED procedures for alkylation and acylation at the 4-position of isoquinoline derivatives include modifications of the Pomeranz-Fritsch reaction,¹ reactions of acyl and alkyl halides with 1,2-dihydroisoquinoline derivatives,²⁻⁴ reactions of 4-lithioisoquinoline with carbon dioxide⁵ and aldehydes,³ and reactions of 4,7diacetoxy-1,2,3,4-tetrahydroisoquinolines with active methylene compounds.⁶ However, since the reactions of 1,2-dihydroisoquinoline derivatives with alkyl halides did not proceed in high yield, we have explored alternative routes to 4-substituted isoquinolines. Here we report a new method of alkylation at the 4-position of a 3,4-dihydroisoquinoline through an enamine intermediate.

† Part 680, T. Kametani, T. Uryu, and K. Fukumoto, preceding paper.

¹ J. M. Bobbitt, K. L. Khanna, and J. M. Kieley, *Chem. and Ind.*, 1964, 1950; J.M. Bobbitt, J. M. Kieley, K. L. Khanna, and R. Ebermann, J. Org. Chem., 1965, 30, 2247; J. M. Bobbitt, D. P.
 Winter, and J. M. Kieley, *ibid.*, p. 2459.
 ² S. F. Dyke, M. Sainsbury, D. W. Brown, M. N. Palfreyman,

and E. P. Tiley, Tetrahedron, 1968, 24, 6703.

At first, we studied enamine formation from 3,4dihydro-6,7-dimethoxy-1-methylisoquinoline⁷ (1) under basic conditions, to determine which enamine, (2) or (3), would be formed as an intermediate. A mixture of the 3,4-dihydroisoquinoline (1) and 2-methylcyclohex-2-enone⁸ (4) (to trap the enamine) was kept at room temperature for 30 min in sodium hydride and dimethyl sul-6,7-Dimethoxy-1-methyl-4-(2-methyl-3-oxophoxide. cyclohexyl)isoquinoline (6) was obtained in 25.7% yield. The i.r. spectrum showed saturated six-membered ring ketone absorption at 1 700 cm⁻¹ (CHCl₃), and the n.m.r. spectrum (CDCl₂) exhibited signals for an aliphatic methyl group at $\delta 0.88$ (d, J 6 Hz) and for the aromatic

³ M. Sainsbury, D. W. Brown, S. F. Dyke, R. D. J. Clipperton,

A. Sansbury, D. W. Brown, S. F. Dyke, K. D. J. Chipperton, and W. R. Tonkyn, *Tetrahedron*, 1970, 26, 2239.
⁴ T. K. Chen and C. K. Bradsher, *Tetrahedron*, 1973, 29, 1951.
⁵ H. Gilman and T. S. Soddy J. Org. Chem. 1957, 22, 565.
⁶ O. Hoshino, Y. Yamanashi, T. Toshioka, and B. Umezawa, Chem. and Phogen. 2021, 1071, 1021.

Chem. and Pharm. Bull. (Japan), 1971, 19, 2166. ⁷ E. Späth and N. Polgar, Monalsh., 1929, 51, 197. ⁸ E. W. Warnhoff, D. G. Martin, and W. S. Johnson, Org. Synth., Coll. Vol. 4, 1963, p. 162.

C-3 proton at δ 8.26 (s). These data suggested that the cyclohexanone was attached to C-4 [λ_{max} (MeOH) 314 and 326 nm], and this fact was rationalised in terms of formation of the enamine (3) and Michael addition of the enamine to 2-methylcyclohex-2-enone to form compound (5), followed by dehydrogenation. Having thus established that the 3,4-dihydro-1-methylisoquinoline (1) formed the enamine (3) under basic conditions, we examined the behaviour of the latter in cycloaddition reactions.

A mixture of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) and 1,4-naphthoquinone (7) was heated at 70 °C for 1 h. No tetracyclic compound product was observed, but the reaction afforded five compounds (8)-(12) in 2.9, 7.4, 7.47, 2.3, and 16.8% yield, respectively. Compound (8) contained sulphur but no nitrogen; the i.r. spectrum showed a carbonyl band (1 660 cm⁻¹) and n.m.r. spectrum (CDCl₃) revealed the presence of an S-methyl group [δ 2.36 (s)], four aromatic protons of an α -naphthoquinone (δ 7.5–8.13), and an olefinic proton [8 6.53 (s)]. Compound (9) showed a naphthoquinone carbonyl band at 1.660 cm^{-1} (CHCl₃) and the n.m.r. spectrum (CDCl₃) showed the presence of a methyl group [δ 2.9 (s)], four aromatic protons in a 1,4-naphthoquinone (8 7.7-8.3), and the C-3 proton of an isoquinoline ring $[\delta 8.03 (s)]$. The product (10) was identified as 6,7-dimethoxy-1-methylisoquinoline from spectral data and direct comparison with an authentic specimen.⁹ Compound (11), which contained a naphthoquinone system $[\nu_{max}$ (CHCl₃) 1 660 cm⁻¹, δ (CDCl₃) 7.7—8.3 (4 H, m)], exhibited n.m.r. signals for two methyl groups at δ 2.7 as a singlet (6 H), and two isoquinoline C-3 protons at δ 8.02 as a singlet. The last product exhibited n.m.r. signals for a methylsulphinyl group (§ 2.5), methylene protons located between a sulphinyl group and an aromatic ring (δ 4.21), protons C-3 and C-4 aromatic (8 8.27 and 7.40; each d, / 6 Hz), a C-methyl and an O-methyl group, and two isolated aromatic protons. Treatment of this product with zinc in acetic acid afforded, in 96% yield, a desulphurisation product, 8 2.36, 2.87, and 3.95 (each s, Me) (no CH₂ signal). This evidence did not distinguish between 7-methoxy-1-methyl-6-methylsulphinylmethyl-(12) and 6-methoxy-1-methyl-7-methylsulphinylmethyl-isoquinoline as the structure of the original product. We therefore carried out an alternative synthesis of compound (13), the desulphurisation product of (2).

4-Methoxy-3-methylbenzaldehyde 10 (14) was condensed with nitromethane in boiling acetic acid in the presence of ammonium acetate to give the nitrostyrene (15), which was reduced with lithium aluminium hydride to afford 4-methoxy-3-methylphenethylamine (16).¹¹ The amine was treated with acetic anhydride-pyridine to give the acetamide (17), which was cyclized in the presence of phosphoryl chloride in acetonitrile to afford the 3,4-dihydro-7-methoxy-1,6-dimethylisoquinoline (18) [δ (CDCl₃) 2.22 and 2.38 (each 3 H, s, Me)]. This 3,4-dihydroisoquinoline was dehydrogenated with sodium

hydride in dimethyl sulphoxide at 70 °C to give 7methoxy-1,6-dimethylisoquinoline (13), which was identical with the foregoing desulphurisation product. Thus, the fifth product was identified as 7-methoxy-1methyl-6-methylsulphinylmethylisoquinoline (12).

¹¹ S. N. Kulkarni, S. B. Patil, P. V. Panchangam, and K. S. Nargund, Indian J. Chem., 1967, 5, 471.

⁹ Von H. Bruderer and A. Brossi, *Helv. Chim. Acta*, 1965, **48**, 1945.

 ¹⁰ R. A. Barnes and N. N. Gerber, J. Org. Chem., 1961, 20, 4540; N. P. Buu-Hoï, N. D. Xuong, M. Sy, G. Lejeune, and N. B. Tien. Bull. Soc. chim. France, 1955, 1694.

388

Alkylation of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) was then attempted with phenethyl bromide (19), at 60 °C for 1 h, and the expected 4phenethylisoquinoline (20) was obtained in 20.5% yield [8 (CDCl₃) 2.98-3.26 (2 CH₂), 8.06 (H-3), and 2.83, 3.91, and 3.96 (3 Me)]. 3,4-Dihydro-6,7-dimethoxyisoquinoline¹² (22) was then treated with 3,4-methylenedioxyphenethyl bromide¹³ (21) under the same conditions, but two unexpected compounds, (24) and (10), were obtained, in 17 and 12.7% yield, respectively. Compound (24), m/e 226 (M^+), showed n.m.r. signals for a methylsulphinyl group at δ 2.55 (singlet) and three methylene groups at 1.6-3.0. The product (10) showed signals for a C-methyl group at δ 2.88 (singlet) and aromatic C-3 and C-4 protons at 8.22 and 7.32 (doublets, 1 6 Hz) in addition to two isolated aromatic protons. The product was in fact identical with authentic 6,7-dimethoxy-1-methylisoquinoline (10).9

Thus the expected 4-phenethylisoquinoline (23) was not formed from a 3,4-dihydroisoquinoline (22) having no methyl group at C-1.

EXPERIMENTAL

M.p.s were measured with a Yanagimoto micro apparatus (MP-S2). I.r. spectra were measured with a Hitachi 215 grating spectrophotometer, n.m.r. spectra with JEOL PMX-60 and JEOL JNM-PS-100 spectrometers (tetramethylsilane as an internal standard), mass spectra with a Hitachi RMU-7 spectrometer, and u.v. spectra with a Hitachi 124 spectrometer.

6,7-Dimethoxy-1-methyl-4-(2-methyl-3-oxocyclohexyl)isoquinoline (6).—Sodium hydride (50% in oil; 1.0 g) was added to dimethyl sulphoxide (20 ml), and the mixture was stirred for 1 h at 70 °C, then cooled in ice while a solution of 3,4-dihydro-6,7-dimethoxy-1-methylisoquinoline (1) (400 mg) in dimethyl sulphoxide (5 ml) was added. The resulting mixture was stirred for 1 h at 60 °C, then a solution of 2-methylcyclohex-2-enone⁸ (4) (220 mg) in dimethyl sulphoxide (5 ml) was added. The mixture was stirred for a further 30 min at room temperature, then water was added and the mixture was extracted with

¹² W. M. Whaley and M. Meadow, J. Chem. Soc., 1953, 1067.
 ¹³ S. Sugasawa and Y. Suzuta, J. Pharm. Soc. Japan, 1951, 71, 1159.

ether. The ethereal solution was extracted with 10% hydrochloric acid, and the aqueous acidic layer was washed with ether and basified with 10% ammonium hydroxide. The aqueous layer was again extracted with ether and the ethereal layer was washed with saturated sodium chloride solution, dried (Na₂SO₄), and evaporated to leave an oil, which was subjected to column chromatography on silica gel (5 g). Elution with chloroform gave the 4-cyclohexyl-isoquinoline (6) (157 mg, 25.7%) as needles (from methanol), m.p. 183—184° (Found: C, 72.4; H, 7.45; N, 4.35. C₁₉H₂₃NO₃ requires C, 72.85; H, 7.35; N, 4.45%), v_{max.} (CHCl₃) 1 700 cm⁻¹ (C=O), δ (CDCl₃) 0.88 (3 H, d, J 6 Hz, CHMe), 2.88 (3 H, s, 1-Me), 4.03 (6 H, s, 2 × OMe), 7.17 (1 H, s, ArH), 7.25 (1 H, s, ArH), and 8.26 (1 H, s, 3-H), m/e 313 (M⁺).

Reaction of 3,4-Dihydro-6,7-dimethoxy-1-methylisoquinoline (1) with 1,4-Naphthoquinone (17).—A solution of sodium hydride (50% in oil; 2.4 g) in dimethyl sulphoxide (30 ml) was stirred for 1 h at 70 °C, then cooled in ice while a solution of the 3,4-dihydroisoquinoline (1) (1 g) in dimethyl sulphoxide (10 ml) was added. The mixture was stirred for 1 h at 70 °C, then a solution of 1,4-naphthoquinone (7) (790 mg) in dimethyl sulphoxide (10 ml) was added. The resulting mixture was stirred for 1 h at 70 °C, then water was added and the mixture was extracted with chloroform. The organic layer was washed with saturated sodium chloride solution, dried (Na₂SO₄), and evaporated to leave a gum which was subjected to column chromatography on silica gel (60 g). Elution with benzene afforded 2-methylthio-1,4-naphthoquinone (8) (30 mg, 2.9%) as yellowish needles (from ethanol), m.p. 165-166° (Found: C, 64.55; H, 4.0. $C_{11}H_8O_2S$ requires C, 64.7; H, 3.95%), v_{max} (CHCl₃) 1 660 cm⁻¹ (C=O), δ (CDCl₃) 2.36 (3 H, s, 2-SMe), 6.53 (1 H, s, 3-H), and 7.5–8.13 (4 H, m, ArH), m/e 204 (M^+). Elution with benzene-methanol (99:1 v/v) then gave 6,7dimethoxy-1-methyl-4-(1,4-naphthoquinon-2-yl)isoquinoline (9) (130 mg, 7.4%) as reddish needles (from methanol), m.p. 218-220° (Found: C, 72.85; H, 4.7; N, 3.8. C₂₂H₁₇O₄,0.25H₂O requires C, 72.6; H, 4.85; N, 3.85%), $\nu_{max.}$ (CHCl₃) 1 660 cm⁻¹ (C=O), δ (CDCl₃) 2.9 (3 H, s, 1-Me), 3.83 (3 H, s, OMe), 4.0 (3 H, s, OMe), 6.76 (1 H, s, ArH), 7.10 (1 H, s, ArH), 7.23 (1 H, s, ArH), 7.7-8.3 (4 H, m, ArH), and 8.03 (1 H, s, 3-H), m/e 359 (M^+), followed by 6,7-dimethoxy-1-methylisoquinoline (10) (74 mg, 7.47%), needles (from n-hexane), m.p. 110-111° (lit.,9 110-111°), $\lambda_{max.}$ (MeOH) 312 and 325 nm, δ (CDCl₈) 2.89 (3 H, s, 1-Me), 4.0 (6 H, s, $2 \times OMe$), 6.9–7.5 (3 H, m, ArH), and 8.2 (1 H, d, J 6 Hz, 3-H), m/e 203 (M^+). Elution with benzene-methanol (49:1 v/v) gave 2,3-bis-(6,7-dimethoxy-1-methylisoquinolin-4-yl)-1,4-naphthoquinone (11) (154 mg, 2.3%) as yellowish needles (from benzene), m.p. >300° (Found: C, 70.45; H, 5.0. C₃₄H₂₈N₂O₆, H₂O requires C, 70.55; H, 5.25%), ν_{max} (CHCl₃) 1 660 cm⁻¹ (C=O), δ (CDCl₃) 2.7 (6 H, s, 2 × Me), 3.93 (6 H, s, 2 × OMe), 4.0 (6 H, s, $2 \times$ OMe), 6.83 (2 H, s, ArH), 7.20 (2 H, s, ArH), 7.7–8.3 (4 H, m, ArH), and 8.02 (2 H, s, 3-H), m/e 560 (M^+). Elution with benzene-methanol (97:3 v/v) afforded 7methoxy-1-methyl-6-methylsulphinylmethylisoquinoline (12)(204 mg, 16.8%) as needles (from n-hexane), m.p. 116-117° (Found: C, 62.5; H, 6.05; N, 5.65. C₁₃H₁₅NO₂S requires C, 62.6; H, 6.05; N, 5.6%), & (CDCl₃) 2.5 (3 H, s, SOMe), 2.9 (3 H, s, 1-Me), 4.0 (3 H, s, OMe), 4.21 (2 H, s, CH2·SO), 7.28 (1 H, s, ArH), 7.70 (1 H, s, ArH), 7.40 (1 H, d, $\int 6$ Hz, 4-H), and 8.27 (1 H, d, $\int 6$ Hz, 3-H), m/e 249 (M^+). Reaction of the 6-Methylsulphinylmethylisoquinoline (12) with Zinc in Acetic Acid.—Activated zinc dust (450 mg) and acetic acid (20 ml) were added to a solution of the isoquinoline (12) (170 mg) in ethanol (10 ml). The mixture was stirred for 2 h at room temperature and refluxed for 2 h. After removal of zinc, the solvent was distilled off in vacuo and the residue was basified with 10% ammonium hydroxide and extracted with chloroform. The organic layer was washed with saturated sodium chloride solution, dried (Na₂SO₄), and evaporated to give 7-methoxy-1,6dimethylisoquinoline (13) (120 mg, 96%), which was purified by sublimation to afford needles, m.p. $84\text{---}85^\circ$ (Found: C, 75.85; H, 6.95; N, 7.25. C₁₂H₁₃NO,0.17H₂O requires C, 75.75; H, 7.05; N, 7.35%), & (CDCl₃) 2.36 (3 H, s, 6-Me), 2.87 (3 H, s, 1-Me), 3.95 (3 H, s, OMe), 7.16-7.53 (3 H, m, ArH), and 8.21 (1 H, d, J 6 Hz, 3-H), m/e 187 (M^+); the hvdrochloride formed needles (from methanol-ether), m.p. 250° (decomp.).

4-Methoxy-3-methyl-β-nitrostyrene (15).—A mixture of 4methoxy-3-methylbenzaldehyde ¹⁰ (14) (5 g), nitromethane (4 g), ammonium acetate (3.9 g), and acetic acid (30 ml) was refluxed for 2 h. The mixture was then poured into water to give a yellowish solid, which was recrystallised from ethanol to give the nitrostyrene (15) (2.5 g, 39%) as yellowish needles, m.p. 76—77° (Found: C, 62.15; H, 5.65; N, 7.5. C₁₀H₁₁NO₃ requires C, 62.15; H, 5.75; N, 7.25%), v_{max} . 1 620 (C=C) and 1 330 cm⁻¹ (NO₂), δ (CDCl₃) 2.22 (3 H, s, Me), 3.89 (3 H, s, OMe), 6.76—7.42 (3 H, m, ArH), 7.45 (1 H, d, J 14 Hz, olefinic), 7.95 (1 H, d, J 14 Hz, olefinic).

4-Methoxy-3-methylphenethylamine (16).—A solution of the nitrostyrene (15) (6 g) in tetrahydrofuran (50 ml) was added to a suspension of lithium aluminium hydride (4 g) in tetrahydrofuran. The mixture was then refluxed for 1 h, 15% sodium hydroxide was added, and the inorganic precipitate was filtered off. Evaporation afforded a residue which was extracted with benzene. The organic layer was washed with saturated sodium chloride solution, dried (K₂CO₃), and evaporated to leave a yellowish oil, which was distilled to give 4-methoxy-3-methylphenethylamine (16) (3 g, 59%) as an oil, b.p. 95—100° at 4 mmHg (lit.,¹¹ 245— 250° at 710 mmHg).

N-(4-Methoxy-3-methylphenethyl)acetamide (17).—A solution of the amine (16) and acetic anhydride (2.5 g) in pyridine (20 ml) was stirred for 2 h at room temperature. Then water (10 ml) was added and the mixture was extracted with chloroform. The organic layer was washed with 10% hydrochloric acid and saturated sodium chloride solution, dried (Na₂SO₄), and evaporated to give the *amide* (17) (3.5 g, 92%) as needles, m.p. 58—59° (from n-hexane) (Found: C, 69.05; H, 8.0; N, 6.4. C₁₂H₁₇NO₂.0.1H₂O requires C, 68.95; H, 8.3; N, 6.7%), v_{max} . (CHCl₃) 1 660 cm⁻¹ (C=O), δ (CDCl₃) 1.90 (3 H, s, Ac), 2.19 (3 H, s, 3-Me), 2.71 (2 H, t, J 7.5 Hz, PhCH₂·CH₂N), 3.41 (2 H, t, J 7.5 Hz, PhCH₂·CH₂·N), 3.77 (3 H, s, OMe), and 6.63—7.1 (3 H, m, ArH).

3,4-Dihydro-7-methoxy-1,6-dimethylisoquinoline (18).—A mixture of the amide (17) (3.4 g), phosphoryl chloride (3.0 g), and acetonitrile (30 ml) was refluxed for 6 h, then evaporated. The residue was washed with ether, basified with 10% ammonium hydroxide solution, and extracted with chloroform. The organic layer was washed with saturated sodium chloride solution, dried (Na₂SO₄), and evaporated to leave an oil, which was purified by column chromatography on silica gel (60 g) with chloroform to give the 3,4-dihydroisoquinoline (18) (1.3 g, 42%) as an oil,

 $ν_{\text{max.}}$ (CHCl₃) 1 620 cm⁻¹ (C=N), δ (CDCl₃) 2.22 (3 H, s, 1-Me), 2.38 (3 H, s, 6-Me), 2.36—2.8 (2 H, m, PhCH₂·CH₂·N), 3.41—3.84 (2 H, m, PhCH₂·CH₂·N), 3.84 (3 H, s, OMe), and 6.86br (2 H, s, ArH), *m/e* 189 (*M*⁺). The *picrate* formed yellowish needles, m.p. 235—236° (from ethanol) (Found: C, 51.7; H, 4.35. C₁₈H₁₈N₄O₇, H₂O requires C, 51.4; H, 4.8%).

7-Methoxy-1,6-dimethylisoquinoline (13).—A mixture of sodium hydride (50% in oil; 1.25 g) and dimethyl sulphoxide (20 ml) was stirred for 1 h at 70 °C. A solution of the 3,4-dihydroisoquinoline (18) (500 mg) in dimethyl sulphoxide (5 ml) was then added and the mixture was stirred for 1 h at 70 °C. After addition of ice-water, the mixture was extracted with 10% hydrochloric acid. The aqueous layer was basified with 10% ammonium hydroxide and extracted with ether. The organic layer was washed with saturated sodium chloride solution, dried (Na₂SO₄), and evaporated to give the isoquinoline (13) (300 mg, 60.8%) which was purified by sublimation to give needles, m.p. 84-85°. The hydrochloride formed needles (from methanol-ether), m.p. 250° (decomp.), identical with the sample prepared previously [i.r. spectrum (KBr)].

(20).—A 6,7-Dimethoxy-1-methyl-4-phenethylisoquinoline mixture of sodium hydride (50% in oil; 1.44 g) and dimethyl sulphoxide (20 ml) was stirred for 1 h at 70 °C. A solution of the 3,4-dihydro-1-methylisoquinoline (1) (615 mg) in dimethyl sulphoxide (5 ml) was then added and the mixture was stirred for 1 h at 65 °C. A solution of phenethyl bromide (19) (555 mg) in dimethyl sulphoxide (5 ml) was then added and the mixture was stirred for 1 h at 70 °C, then decomposed with water and extracted with ether. The ethereal layer was extracted with 10% hydrochloric acid. The aqueous layer was basified with 10% ammonium hydroxide and extracted with ether. The organic layer was washed with saturated sodium chloride solution, dried (K_2CO_3) , and evaporated to leave an oil, which was chromatographed on silica gel (30 g) with chloroform to give the 4-phenethylisoquinoline (20) (189 mg, 20.5%) as an oil, $\lambda_{\rm max}$ (MeOH) 315 and 327 nm, δ (CDCl_3) 2.83 (3 H, s, 1-Me), 2.98-3.26 (4 H, m, CH₂·CH₂), 3.91 (3 H, s, OMe), 3.96 (3 H, s, OMe), 7.0-7.33 (7 H, m, ArH), and 8.06 (1 H, s, 3-H), m/e 307 (M⁺). The picrate had m.p. 210-211° (decomp.) (from ethanol) (Found: C, 57.95; H, 4.65; N, 10.05. C₂₆H₂₄N₄O₉ requires C, 58.2; H, 4.5; N, 10.45%).

Reaction of 3,4-Dihydro-6,7-dimethoxyisoquinoline (22) with 3,4-Methylenedioxyphenethyl Bromide (21).-Sodium hydride (50% in oil; 1.4 g) in dimethyl sulphoxide (30 ml) was stirred for 1 h at 70 °C, then a solution of the 3,4dihydroisoquinoline (22) (573 mg) in dimethyl sulphoxide (5 ml) was added. The mixture was stirred for 30 min at 60 °C and a solution of the phenethyl bromide (21) in dimethyl sulphoxide (5 ml) was added. Stirring was continued for 3 h at 70 °C, then ice-water was added, and the mixture was extracted with ether. The ethereal layer was extracted with 10% hydrochloric acid and the extract was washed with ether. The aqueous layer was basified with 10% ammonium hydroxide solution and extracted with ether. The organic layer was washed with saturated sodium chloride solution, dried (Na₂SO₄), and evaporated to leave an oil, which was subjected to column chromatography on silica gel (30 g). Elution with benzene-ethyl acetate (95:5 v/v) afforded the 1-methylisoquinoline (10) (73 mg, 12.3%) as needles (from n-hexane), m.p. 110-111° (lit.,⁹ 110-111°), identical with an authentic specimen ⁹ [i.r. spectrum (CHCl₃)]. Elution with benzene-ethyl acetate (4:1 v/v) gave methyl 3-(3,4-methylenedioxyphenyl)propyl sulphoxide (24) (123 mg, 17%) as an oil, δ (CDCl₃) 2.55 (3 H, s, SOMe), 1.6—3.0 (6 H, m, CH₂·CH₂·CH₂), 5.39 (2 H, s, O·CH₂·O), and 6.7br (3 H, s, ArH), *m/e* 226 (*M*⁺).

We thank Mrs. H. Hori, Mrs. C. Koyanagi, Mrs. R. Kobayashi, Miss R. Suenaga, and Mr. K. Kawamura, Pharmaceutical Institute, Tohoku University, for microanalyses and spectral measurements.

[6/750 Received, 15th April, 1976]